CPM-200: Principles of Schedule Management

Lesson C: Schedule Analysis Techniques

Instructor

Walt Majerowicz, PMP

301-286-5622 Walter.Majerowicz.1@gsfc.nasa.gov

1st Annual NASA Project Management Conference
March 30-31, 2004
Professional Education Program (Training Track) presented by
PMI-College of Performance Management faculty

Lesson Objectives

The student will understand:

- 1. What is meant by Schedule Analysis.
- 2. What insight Schedule Analysis can provide the project team.
- 3. Why Schedule Analysis is performed.
- 4. What are some of the basic techniques for performing Schedule Analysis

This Lesson Will Provide Insight Into:

- Critical Path: schedule driver or long pole
- Accuracy: correct schedule inputs (activities, durations)
- Integration: properly defined interrelationships
- □ Realism: an achievable schedule
- Performance: timely, efficient accomplishment of work
- Variances: significance of differences from baseline
- □ Trends: direction of the schedule
- Forecasting: predicting future schedule performance
- What-If: impact of potential problems and changes
- Risk: likelihood of overrunning the schedule
- Resources: sufficient availability of staff, facilities, etc.

NBT Project Critical Path last month: - what's the "long pole?"

REV: Baseline 8/15/01

NBT Project Critical Path this month: has it changed and why?

2003 J F M A M J F M A M J Early Start Early Finish Total Slack S O N D JASOND ID Activity Dur Authorize Funding 0 days 10/1/01 10/1/01 0 days **VEI** started S/C Bus is ahead of Procure VEI 220 11/12/01 ays schedule on schedule Instrument days Procure Spacecraft 200 10/8/01 7/12/02 59 days Bus davs Integrate RCI to 5 days 11/14/02 11/20/02 -29 days **RCI** delivery Spacecraft delayed Develop RCI 10/8/01 11/13/02 -29 days 288 Instrument days Integrate VEI to 5 days 11/21/02 11/27/02 -29 days Spacecraft Observatory 120 11/28/02 5/14/03 -29 davs Testing **Negative** davs **Total Slack** Schedule 5/15/03 7/13/03 60 days -41 days Contingency 8/1/03 launch Launch Site 7/14/03 9/11/03 60 days -41 days threatened **Operations** 8/1/03 8/1/03 -41 days 10 Launch 0 days

REV: Baseline 8/15/01

Schedule Accuracy: is the schedule data correct?

Schedule Accuracy- The primary data used to develop the schedule should be correct and based on reality

- Activities capture the entire work scope
- Durations are realistic and feasible, not "success-oriented" or "fat"
- Assumptions and constraints are legitimate

Analysis Approach:

- Verification of activity traceability to project data (e.g. WBS, SOW)
- Comparison of current durations to baseline, prior period, "actuals" from similar projects or previous builds, BOEs, supplier lead times, etc.
- Verification of schedule assumptions with external agreements such as Memorandums Of Understanding, Letters Of Agreement, contracts & subcontracts, GFE lists, etc.

Horizontal Schedule Integration: is the logic right?

Vertical Schedule Integration: is alignment correct?

Cost Account / Work Package Schedules

Schedule Realism: is the schedule achievable?

NBT Project "Early Finish" Date Baseline Schedule Plan

	Oct '01	Nov '01	Dec '01	Jan '02	Feb '02	Mar '02	Apr '02	May '02	Jun '02	Jul '02	Aug '02	Sep '02	Oct '02	Nov '02
CUM Baseline	1	2	3	6	11	22	32	45	53	59	62	65	70	72
CUM Actual														
CUM Forecast							·	·			·			

Schedule Performance: are activities being accomplished on time?

NBT Project Schedule Performance – as of May 30, 2002

	Oct '01	Nov '01	Dec '01	Jan '02	Feb '02	Mar '02	Apr '02	May '02	Jun '02	Jul '02	Aug '02	Sep '02	Oct '02	Nov '02
CUM Baseline	1	2	3	6	11	22	32	45	53	59	62	65	70	72
CUM Actual	1	3	7	7	8	9	12	16						

Schedule Performance: Ratio Analysis Example

ASTRO Project Software Module Code & Checkout Completion: As of 5/31/02

		•														
		2001			2002											
	Oct	Nov	Dec	Jan Feb Mar Apr				May	Jun	Jul	Aug	Sep	Oct	Nov		
CUM Baseline	1	2	3	6	11	22	32	40	50	59	62	65	67	70		
CUM Actual	1	3	7	7	8	15	24	30								

TO DATE

30 modules \div 8 months = 3.75 (actual rate) 40 modules \div 8 months = 5 (baseline rate) 3.75 \div 5 = 75% efficiency-to-date

0% ----- 50% ----- 100% Less Efficient More Efficient

To date, schedule efficiency is 75% - the ASTRO software development team is accomplishing, on average, 3/4 of what it planned to do.

Schedule Variances:

are differences from the baseline significant?

NBT Project Schedule Performance - as of May 30, 2002

	Oct '01	Nov '01	Dec '01	Jan '02	Feb '02	Mar '02	Apr '02	May '02	Jun '02	Jul '02	Aug '02	Sep '02	Oct '02	Nov '02
CUM Baseline	1	2	3	6	11	22	32	45	53	59	62	65	70	72
CUM Actual	1	3	7	7	8	9	12	16						
CUM Forecast									23	30	40	57	66	72

Example Variance Analysis Report

WBS: 1.1.2 C&DH Subsystem

1.1.2.2 RTT "B" Assembly

MILESTONE: CDH6022 RTT "B" Ready for Observatory

Integration & Test

BASELINE: 5/28/02

FORECAST: 6/7/02

CAUSE & CORRECTIVE ACTION:

- •Memory anomaly during final test caused a 10 day slip in delivery to I&T, putting the RTT B on the critical path at -5 days total slack.
- •A 2nd shift will be added to finish testing.
- •I&T Manager can modify I&T work flow to accommodate this delay if necessary.

Schedule Trends:

is the schedule's direction favorable or unfavorable?

Schedule Trend(s):

- Indicate the schedule's future direction based on historical results
- Provide a means to indicate the extent to which actual and predicted performance are diverging from the baseline schedule

Analysis Approach:

- Performance trends: track actual completion of activities and milestones over time to determine if progress is being made
- Slack trends: track slack depletion over time to assess if sufficient spare time is available or if resources should be reallocated
- Reserve trends: track reserve consumption over time to determine if it is still sufficient
- Delivery trends: track projected delivery dates over time to extent of delays or slippages

Delivery Date Trend vs. Need Date Trend

Example Slack Trend With Risk Thresholds

Example Schedule Reserve Trend

NBT Project Schedule Reserve Consumption Trend

As of: March 31, 2001

Risk-Based Schedule Reserve Determination Example

<u>Activity</u>	<u>Risk</u>	<u>Impact</u>	<u>Pr</u>	<u>obabili</u>	<u>ty</u>	Expected Value of Reserve
Observatory Mechanical Integration	Late MGSE	30 days	x	.10	=	3 days
Observatory Vibration Test	Component damage	45 days	x	.20	=	9 days
Observatory EMI Test	Noise anomaly	40 days	x	.60	=	24 days
Thermal Vacuum Test	Instrument failure	80 days	x	.50	=	<u>40</u> days

Schedule Forecasting:

what is the predicted future schedule performance?

NBT Project Schedule Performance – as of May 30, 2002

	Oct '01	Nov '01	Dec '01	Jan '02	Feb '02	Mar '02	Apr '02	May '02	Jun '02	Jul '02	Aug '02	Sep '02	Oct '02	Nov '02
CUM Baseline	1	2	3	6	11	22	32	45	53	59	62	65	70	72
CUM Actual	1	3	7	7	8	9	12	16						
CUM Forecast									23	30	40	57	66	72

Projection Based on Efficiency-To-Date

ASTRO Project Software Module Code & Checkout Completion: As of 5/31/02

		2001			2002												
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov			
CUM Baseline	1	2	3	6	11	22	32	40	50	59	62	65	67	70			
CUM Actual	1	3	7	7	8	15	24	30									
CUM Forecast									37	46	52	60	66	70			

TO DATE

30 modules \div 8 months = 3.75 (actual rate)

40 modules ÷ 8 months = 5 (baseline rate)

 $3.75 \div 5 = 75\%$ efficiency-to-date

TO GO

Actual rate to date = 3.75 modules

40 modules \div 6 months = 6.7 (forecast rate)

 $6.7 \div 3.75 = 178\%$ efficiency-to-complete!

To date, schedule efficiency is 75%. To go, the forecast-to-complete efficiency of 178% is probably unrealistic - unless something has changed (e.g. new technical approach, add more programmers, descope work, etc.)

"What-If" Schedule Analysis: how will changes affect the schedule?

"What-If" Schedule

- Projects the effect on the baseline or current operating schedule of a potential problem, new constraint, or changed assumption
- Provides the project team with insight into the impact of potential changes on the project's schedule objectives

Analysis Approach

- Develop a "What-If" schedule by modifying the baseline and/or current operating schedule to reflect a desired schedule change
- Examples:
 - Change a key assumption Funding shortfalls
 - Late parts or GFE delivery
 - Descope of work

- Staffing shortages

NOAA M-N' I&T Summary Schedule As of 3/31/01

(Based on Preliminary LMMS Rev S Schedule) 2001 2002 2003 2004 J A S O N D J F M A M A S O N D J F M A M JJASOND ONDJEMAMJ J F M A M NOAA-M PID Titan II Closure **End of Contract** 0 9/30 Call-Up Call - Up LE0 "What-If" the WTR* launch was delayed Projected End-Of-Contract Launch Δ to 6/30/02? Contract Storage NOAA-N PLD Need Avail 8/6 6/14 1/31 6/30 Instr 1 Prep Vib/Acou B152 TB/TV EMI Call-up LE₀ SEPET Pre-Vib Post Vib 2 B158 WTR Storage LRD Launch 4/17 12/4 6/30 NOAA-N' Contract Storage Need/Avail NOAA-N' Planned Launch is March 2008. 4/18 6/30 DR SEPET Pre-Vib Post Vib B152 TV EMI nteg Pre-Vih Bus Bus Instr Vib/Acou B158 Storage LRD 5 7 8/28 2/25

* = Not yet in LMMS Master Schedule

Foot Notes:

- 1. A303 Removal; Installation of Mass Models*
- 2. A303 Re-Integration & IPF/DET*
- 3. SEM & SBUV* Removal
- 4. SEM & SBUV* Re-Integration

- 5. SARR Delivery 6/15/01
- 6. A303 Installation on N' 5/13/01
- 7. SBUV Delivery 7/6/01
- 8. SARP/ADCS Delivery 4/30/02
- 9. SARP & ADCS Integration*

NOAA M-N' 1&T Summary Schedule: 6/30/02 M Launch (Based on Preliminary LMMS Rev S Schedule)

Foot Notes:

- 1. SEM, SBUV, AVHRR & H303 Removal
- 2. SEM. SBUV. AVHRR & H303 Re-Integration
- 3. A303 Removal: Installation of Mass Model*
- 4. A303 Re-Integration & IPF/DET*
- 5. SEM & SBUV* Remova

- 6. SEM & SBUV* Re-Integration
- 7. SARP & ADCS Software Upgrades*
- 8. SARP/ADCS Delivery 4/30
- 9. SARP & ADCS Integration

NOAA-M Launch From VAFB, CA – 6/24/02

Schedule Risk Analysis:

what is the likelihood of overrunning the schedule?

Risk: a threat or uncertainty that could adversely impact the project's schedule objectives

Analysis Approach:

- Project Risk Listing: multi-disciplined subgroup of the project team lists and ranks qualitative or "gut feel" risks based on past experience early in the project life cycle
- □ Formal Risk Management Systems: establish and track schedule risks with parameters using alert zones or thresholds that when triggered lead to corrective action planning
- Simulation Analysis: mathematical modeling which translates the uncertainties associated with activity durations into their potential impact on the project's overall duration and schedule objectives ("Monte Carlo" technique)

Quantifying Schedule Risk

Could a range of duration estimates help us quantify schedule risk?

	Activity D	uration Est	timates - W	ork Days
	Network	Low	High	Average/
Activity	Duration	Estimate	Estimate	Expected
Design	30.00	10.00	60.00	33.33
Fab & Assy	40.00	20.00	75.00	45.00
I&T	20.00	15.00	40.00	25.00
Total	90.00	45.00	175.00	103.33

Example Project with 3 serial activities

The difference between the most likely duration (used in the logic network) and the average/expected duration computed from the distribution is expressed as a potential overrun or delay:

103.33 - 90 = 13.33 work days of potential overrun

Resource Analysis: have resources been considered?

Duration

Number of work periods or length of time needed for available resources to do the work

Work

Amount of effort needed to accomplish an activity

Resources

People, equipment, facilities, etc. needed to perform the work

Realistic schedules must account for resource availability – which help define an accurate cost estimate and budget.

Resource Identification & Allocation

Resource Identification: the selection and definition of resource categories that are needed to accomplish the project's activities (e.g. people, equipment, funds)

Resource Allocation: assigning and "loading" activities with the amounts of resources estimated to accomplish them

					Ap	or 8,	'01				1	۱	15	5, 'C)1			Α	pr 2	22,	'01			
ID	Task Name	Duration	Work	Resource	\$	M		$\overline{}$	F	S	3	SI	1	TV	- ا۷	ГΓ	S	S	M	Т	W	Τ	F	S
1	Award Contract	0 days?	0 hrs				\wedge] 4/ 1	11									2000						
2	Fab Housing	10 days?	80 hrs	Mech Tech II		I/11 ₁															Λ	4/2	24	
3	Fab Side Panels	5 days?	40 hrs	Mech Tech II		I/11	<u> </u>							Λ	-4 /	17				f				
4	Prep Module	2 days?	16 hrs	Mech Tech II		1/11		₩₩,	Λ	4 /	12									\parallel				
5	Assemble Unit	1 day?	8 hrs	Mech Tech II							200000000000000000000000000000000000000								4/2	5	Λ/	^	4/2	5
6	Deliver Unit	0 days?	0 hrs																			\wedge	4/2	

Initial Resource Profile

The shortage or over-commitment of resources is determined by profiling the requested resources and comparing them to their availability or capacity.

Resource Analysis

- Resource Analysis: resolution of inconsistencies between resource supply and demand in a specific period of time including:
 - Add more of the resource (e.g. 2nd shift)
 - Find a substitute for the resource (e.g. subcontract)
 - Delay some activities (examine free slack)
 - Perform some activities earlier than planned (examine logic)
 - Combination of the above
- Resource Leveling: the "smoothing" of resources so planned utilization matches availability in the most efficient manner while still meeting the project schedule's objectives if possible
 - Schedule slack is a key consideration in leveling
 - Leveling most useful for critical, near-term activities

"Leveled" Resource Profile

The "leveling" or smoothing of the "Mechanical Tech II" resource allocation to fit the available capacity of one MTII.

Resource-Constrained Schedule

"Leveling" the resources results in a more realistic schedule, but delivery cannot occur on 4/25/01 as currently planned.

Summary

- A baseline schedule is just a starting point
- Project teams need information to help keep things on track in order to meet objectives
- Schedule analysis techniques can augment earned value analysis by:
 - Evaluating schedule results
 - Assessing the magnitude, impact, and significance of actual and forecast variations to the baseline schedule and/or current operating schedule